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We investigate convection in a fluid channel uniformly heated from below and rotating about a vertical axis.
When the width of the channel is moderate, convective instabilities are characterized by two three-dimensional
traveling waves having the same frequency and wave number but traveling in opposite directions with different
spatial structures. This Rapid Communication demonstrates that neither the progradely nor the retrogradely
traveling wave is physically realizable in the vicinity of the instability threshold. The nature of convection is
marked by nonlinear interactions of the two oppositely traveling three-dimensional waves which interfere
strongly, leading to either vacillating or stationary convective flows.

DOI: 10.1103/PhysRevE.75.055302 PACS number�s�: 47.20.Bp

I. INTRODUCTION

As a consequence of rotational effects, convective insta-
bility and its primary bifurcation in many rotating systems
are in the form of either progradely or retrogradely traveling
waves. In rotating spheres or spherical shells, the primary
bifurcation takes the form of progradely traveling waves of
constant amplitude �e.g., �1–4��. In rotating annuli heated
from the sidewall with the sloping top and bottom ends,
weakly nonlinear convection is described by steadily travel-
ing waves whose direction depends on the curvature of the
ends �e.g., �5–8��. In rotating cylinders heated from below,
the primary convection near the instability threshold also
takes the form of steadily traveling waves of constant ampli-
tude �e.g., �9–13��. Generally speaking, the primary bifurca-
tion from convective instabilities in those rotating systems is
characterized by a single traveling wave that has constant
amplitude and propagates in a specific direction.

Convection in a fluid channel uniformly heated from be-
low and rotating about a vertical axis, first studied by
Davies-Jones and Gilman �14�, is fundamentally different.
For a rotating Bénard layer in the presence of two vertical
sidewalls, the effect of the sidewalls not only destabilizes
convection but also produces two oppositely traveling waves
with the same frequency and wave number and rich dynam-
ics �15–17�. Whether or how the two oppositely traveling
three-dimensional waves interact nonlinearly remains an im-
portant unanswered question. An unusual feature of the prob-
lem is that the role played by the aspect ratio �, the width to
depth of the channel, in linear solutions is quite different
from that in nonlinear solutions. While linear solutions are
nearly unaffected by the value of �, nonlinear solutions are
critically dependent upon the size of �. For moderately small
�, the two oppositely traveling waves always interfere non-
linearly and intensively, leading to a primary bifurcation that
fundamentally differs from those in spherical or cylindrical
or planar geometries. It should be noted that the strong non-

linear interaction cannot occur in a full circular annulus
when the inner cylinder is not sufficiently large �18�. This
Rapid Communication reports a new convection phenom-
enon in connection with these two oppositely traveling, non-
linearly interactive, three-dimensional waves in rotating fluid
systems.

II. MATHEMATICAL FORMULATION

We consider convection in a Boussinesq fluid with con-
stant thermal diffusivity �, thermal expansion coefficient �
and kinematic viscosity � in an annular channel of depth d
and width �d. The geometry of the problem is shown in Fig.
1. The vertical coordinate is given by z, inward radial coor-
dinate by y, and azimuthal coordinate by x. A cross section of
the annular channel is then in the yz plane. By assuming the
radius of the annulus is much larger than the width of the
annular channel, the effect of the annular curvature is ne-
glected ��14,19��. The fluid channel rotates uniformly with a

constant angular velocity �k̂ in the presence of vertical

gravity g=−g0k̂, where k̂ is a vertical unit vector. As in the
Rayleigh-Bénard problem, the channel is uniformly heated
from below to maintain an unstable vertical temperature gra-
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FIG. 1. Geometry of a rotating annular channel whose cross
section is defined by 0�y��d, 0�z�d with x parallel to the
walls of the channel.
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dient ��0=−�k̂, where � is a positive constant. The convec-
tion problem is governed by the three dimensionless equa-
tions

�u

�t
+ u · �u + Ta1/2k̂ 	 u = − �p + R�k̂ + �2u , �1�

Pr� ��

�t
+ u · ��� = u · k̂ + �2� , �2�

� · u = 0, �3�

where � represents the dimensionless deviation of the tem-
perature from its conducting state �0, p is the total pressure,
and u is the three-dimensional velocity field u= �ux ,uy ,uz�
with the corresponding unit vectors �î , ĵ , k̂�. The problem is
characterized by three nondimensional parameters, the Ray-
leigh number R, the Prandtl number Pr, and the Taylor num-
ber Ta. As in previous studies �e.g., �14,20��, we shall assume
conducting and stress-free conditions at the top and bottom
and insulating and nonslip conditions at the sidewalls.

We express the velocity u as a sum of poloidal �
� and
toroidal ��� vectors

u = � 	 � 	 �
�x,y,z,t�ĵ� + � 	 ���x,y,z,t�ĵ� . �4�

Making use of this expression and applying ĵ ·�	 and
ĵ ·�	�	 onto Eq. �1�, we can derive, from Eqs. �1� and �2�,
three independent scalar equations

��2 −
�2

�y2�� ��

�t
− Ta1/2�


�z
− �2�� − R

��

�x

= ĵ · � 	 �u · �u� , �5�

��2 −
�2

�y2�� ��2


�t
+ Ta1/2��

�z
− �4
� − R

�2�

�y � z

= − ĵ · � 	 � 	 �u · �u� , �6�

�Pr
�

�t
− �2�� −

�2


�y � z
−

��

�x
= − Pr�u · ��� . �7�

The boundary conditions at the stress-free, conducting top
and bottom are

� =
�2�

�z2 =
�


�z
=

�3


�z3 = � = 0 at z = 0,1, �8�

while on the no-slip, insulating sidewalls we require that

� = 
 =
�


�y
=

��

�y
= 0 at y = 0,� . �9�

We shall first perform the stability analysis of linearized ver-
sions of Eqs. �5�–�7� and then solve the fully nonlinear equa-
tions.

III. INSTABILITY AND BIFURCATION

There exist important spatial symmetries in the governing
equations �5�–�7� subject to the conditions �8� and �9�. Con-

sider the linear solutions at the onset of convection. Equa-
tions �5�–�7� with the boundary conditions �8� and �9� are
invariant under the azimuthal translation and reflections with
respect to the middle vertical plane y=1/2 and to a cross-
section plane, say x=0. In other words, if

�
�x,y,z,t�,��x,y,z,t�,��x,y,z,t��

is a solution to Eqs. �5�–�7�, then

�
�− x,� − y,z,t�,��− x,� − y,z,t�,− ��− x,� − y,z,t��

is also a solution. This implies that there always exist two
oppositely traveling three-dimensional waves with the same
frequency and wave number but different spatial structures at
the onset of convection: one propagates in the retrograde
direction �the negative x direction�

��,
,��1 = ���y�sin �z,
�y�cos �z,��y�sin �z�ei�ax+
t�,

�10�

where a is the azimuthal wave number which is henceforth
assumed to be positive a�0 and 
 denotes the frequency,
while the other travels in the prograde direction �the positive
x direction�

��,
,��2 = ��*�� − y�sin �z,
*�� − y�cos �z,

− �*�� − y�sin �z�ei�ax−
t�. �11�

Here f* denotes the complex conjugate of f . For Ta�1 with
��O�Ta−1/6�, the two traveling waves tend to concentrate in
the vicinities of the two sidewalls with typical radial scale
O�Ta−1/6�. For example, there exist two most unstable con-
vection modes for Ta=106 and �=0.5 at Pr=7.0 �water at
room temperature�. They correspond to two oppositely trav-
eling waves: the retrograde mode concentrating at the outer
sidewall �y=0� is described by the critical Rayleigh number
Rc=3.52	104 with the critical wave number ac=4.1517 and
the critical frequency 
c=4.135, while the prograde mode
concentrating at the inner sidewall �y=�� is characterized by
Rc=3.52	104 with ac=4.1517 and 
c=−4.135. The struc-
ture of both the most unstable modes is depicted in Fig. 2.

A distinct feature of the problem is the role played by the
aspect ratio � in determining the nature of nonlinear solu-
tions. For the linear problem, traveling wave solutions are
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FIG. 2. Linear traveling wave solutions for �=0.5, Pr=7, and
Ta=106 with Rc=3.52	104 ,ac=4.1517: �a� contours of � at
z=1/2 for the retrograde mode �
=4.135�; �b� � at z=1/2 for the
prograde mode �
=−4.135�.
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hardly affected by the size of � as long as ��O�Ta−1/6� with
Ta�1. Parameters for the convective instabilities such as the
critical Rayleigh number and critical wave number remain
nearly unchanged for any value of � in the regime
��O�Ta−1/6�. Moreover, the profiles of linear solutions for
different values of � are almost identical to that shown in
Fig. 2 apart from extra motionless regions. For the nonlinear
problem, however, convection is critically dependent upon
the size of �. For ��O�Ta−1/6�, the two traveling waves are
decoupled and may be studied independently �e.g., �12,13��.
For �=O�Ta−1/6�, the two waves traveling in the opposite
directions with the same wave number and frequency inter-
fere destructively or constructively, creating a unique nonlin-
ear dynamics in rotating convection. In this case, there are
four possible scenarios for nonlinear convection in the vicin-
ity of the threshold: �i� a retrogradely steadily traveling wave
of constant amplitude, �ii� a progradely steadily traveling
wave of constant amplitude, �iii� a standing-wave nonlinear
convection and �iv� a vacillating convection resulting from
strong nonlinear interaction between the two traveling
waves. Since the two three-dimensional waves have different
spatial structures, for instance, 
�y��
*��−y� and
��y���*��−y�, the third possibility, that of a nonlinear
standing-wave solution, can be ruled out.

Analytical studies for nonlinear convection involving two
three-dimensional waves appears to be formidable since even
linear solutions are highly complicated and very lengthy. We
hence choose to tackle the nonlinear problem via direct
three-dimensional numerical simulations. In an attempt to
unveil the nature of the primary bifurcation from convective
instabilities, we introduce �= �R−Rc� /Rc to measure the de-
gree of supercriticality and then simulate nonlinear convec-
tion gradually from small to moderate values of �. Figure 3
shows kinetic energies of nonlinear convection for several

values of � for �=0.5,Pr=7.0, and Ta=106 with the critical
Rayleigh number Rc=3.52	104. It should be noted that the
transient behaviors from arbitrary initial conditions are not
shown in Fig. 3 since the nonlinear solutions are robust and
not affected by the precise form of initial conditions used in
the simulations. It is found that neither the retrogradely trav-
eling wave nor the progradely traveling wave is separately
physically realizable. In the weakly nonlinear regime
0���1, two traveling waves having the same wave number
and frequency traveling in opposite directions always inter-
act nonlinearly. This will be referred to as two slipping op-
positely traveling waves. Dependent upon the relative phases
of the two waves at any instant, the interference can be de-
structive or constructive, resulting in time-dependent vacil-
lating convection. Figure 4 depicts the profiles of the
vacillating convection at a number of different instants for
�=0.3. When the phase of the two waves is the same �top
and bottom panel in Fig. 4�, the amplitude of the nonlinear
flow reaches a minimum while it attains a maximum when
they are out of the phase �middle panel in Fig. 4�.

When nonlinear effects are sufficiently strong in
1���6, however, the two oppositely traveling and nonlin-
early interactive waves are combined to form a stationary
flow representing the secondary bifurcation. This will be re-
ferred to as two stuck oppositely traveling waves. The
structure of three stationary nonlinear solutions for
�=2.5,3.5,5.0 is depicted in Fig. 5 and their kinetic energies
are shown in Fig. 3. The profile for �=2.5 �top panel in Fig.
5� is largely similar to that shown in Fig. 4 �top panel� at the
instant when the two oppositely traveling waves have nearly
the same phase. When � increases further, the phase differ-

FIG. 3. Kinetic energies of nonlinear convection at six different
values of � for �=0.5, Pr=7, and Ta=106.

FIG. 4. Contours of � at z=1/2 for convection for �=0.5,
Pr=7, Ta=106, �=0.3 at five different instants in the one oscillation
period.

NONLINEAR CONVECTION IN ROTATING SYSTEMS: … PHYSICAL REVIEW E 75, 055302�R� �2007�

RAPID COMMUNICATIONS

055302-3



ence becomes greater, as clearly shown in Fig. 5 �middle and
bottom panels�. However, they still stick together: the result-
ing nonlinear convection remains stationary. Our numerical
simulations suggest that the stationary convection produced
by two stuck oppositely traveling waves is the only stable
solution in the regime 1���6. Nonlinear convection be-
comes oscillatory, as shown in Fig. 3, when the supercritical
Rayleigh number increases to �=7.5.

IV. CONCLUDING REMARKS

We have shown that neither progradely nor retrogradely
traveling waves can represent a stable nonlinear state in the

vicinity of the threshold when the width of the channel is
moderate. The primary bifurcation from convective instabili-
ties is always marked by two three-dimensional waves that
travel in opposite directions and interfere nonlinearly, either
destructively or constructively, leading to a vacillating con-
vective flow. The two slipping traveling waves become stuck
together when nonlinear effects become sufficiently strong in
the regime �=O�1�, leading to a secondary bifurcation in the
form of stationary convection representing two stuck oppo-
sitely traveling waves.

This Rapid Communication represents the first study of
nonlinear convection in rotating fluid systems in which the
flow is characterized by strong nonlinear interactions be-
tween two oppositely traveling three-dimensional waves
with the same frequencies and wave numbers but different
spatial structures. We have only so far tackled the problem of
nonlinear convection through fully three-dimensional nu-
merical simulations. An analytical theory describing nonlin-
ear convection in the form of slipping or stuck oppositely
traveling three-dimensional waves remains a challenging
task.
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